Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approximately 350 Ma in a common ancestor of over 26,000 species of teleost fishes. Through a combination of whole genome and bacterial artificial chromosome clone sequencing we characterized all Hox gene clusters of Pantodon buchholzi, a member of the early branching teleost subdivision Osteoglossomorpha. We find 45 Hox genes organized in only five clusters indicating that Pantodon has suffered more Hox cluster loss than other known species. Despite strong evidence for homology of the five Pantodon clusters to the four canonical pre-TGD vertebrate clusters (one HoxA, two HoxB, one HoxC, and one HoxD), we were unable to confidently resolve 1:1 orthology relationships between four of the Pantodon clusters and the eight post-TGD clusters of other teleosts. Phylogenetic analysis revealed that many Pantodon genes segregate outside the conventional "a" and "b" post-TGD orthology groups, that extensive topological incongruence exists between genes physically linked on a single cluster, and that signal divergence causes ambivalence in assigning 1:1 orthology in concatenated Hox cluster analyses. Out of several possible explanations for this phenomenon we favor a model which keeps with the prevailing view of a single TGD prior to teleost radiation, but which also considers the timing of diploidization after duplication, relative to speciation events. We suggest that although the duplicated hoxa clusters diploidized prior to divergence of osteoglossomorphs, the duplicated hoxb, hoxc, and hoxd clusters concluded diploidization independently in osteoglossomorphs and other teleosts. We use the term "tetralogy" to describe the homology relationship which exists between duplicated sequences which originate through a shared WGD, but which diploidize into distinct paralogs from a common allelic pool independently in two lineages following speciation.

Original publication

DOI

10.1093/molbev/msu202

Type

Journal article

Journal

Mol Biol Evol

Publication Date

10/2014

Volume

31

Pages

2592 - 2611

Keywords

Pantodon, WGD, diploidization, homeobox, teleost, tetraploidy, Animals, Evolution, Molecular, Fishes, Gene Duplication, Genes, Homeobox, Genetic Speciation, Models, Genetic, Molecular Sequence Data, Phylogeny, Sequence Analysis, DNA, Sequence Homology