Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cardosin A is the major vacuolar aspartic proteinase (APs) (E.C.3.4.23) in pistils of Cynara cardunculus L. (cardoon). Plant APs carry a unique domain, the plant-specific-insert (PSI), and a pro-segment which are separated from the catalytic domains during maturation but the sequence and location of processing steps for cardosins have not been established. Here transient expression in tobacco and inducible expression in Arabidopsis indicate that processing of cardosin A is conserved in heterologous species. Pulse chase analysis in tobacco protoplasts indicated that cleavage at the carboxy-terminus of the PSI could generate a short-lived 50 kDa intermediate which was converted to a more stable 35 kDa intermediate by removal of the PSI. Processing intermediates detected immunologically in tobacco leaves and Arabidopsis seedlings confirmed that cleavage at the amino-terminus of the PSI either preceded or followed quickly after cleavage at its carboxy-terminus. Thus removal of PSI preceded the loss of the prosegment in contrast to the well-characterised barley AP, phytepsin. PreprocardosinA acquired a complex glycan and its processing was inhibited by brefeldin A and dominant-inhibitory AtSAR1 or AtRAB-D2(a )mutants indicating that it was transported via the Golgi and that processing followed ER export. The 35 kDa intermediate was present in the cell wall and protoplast culture medium as well as the vacuole but the 31 kDa mature subunit, lacking the amino-terminal prosegment, was detected only in the vacuole. Thus maturation appears to occur only after sorting from the trans-Golgi to the vacuole. Processing or transport of cardosin A was apparently slower in tobacco protoplasts than in whole cells.

Original publication

DOI

10.1007/s00425-008-0697-1

Type

Journal article

Journal

Planta

Publication Date

05/2008

Volume

227

Pages

1255 - 1268

Keywords

Arabidopsis, Arabidopsis Proteins, Aspartic Acid Endopeptidases, Cynara, Endoplasmic Reticulum, Flowers, Golgi Apparatus, Isoenzymes, Plant Proteins, Polymerase Chain Reaction, Polysaccharides, Protein Isoforms, Rhizobium, Tobacco, Vacuoles