Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The function of the Rab-E subclass of plant Rab GTPases in membrane traffic was investigated using a dominant-inhibitory mutant (RAB-E1(d)[NI]) of Arabidopsis thaliana RAB-E1(d) and in vivo imaging approaches that have been used to characterize similar mutants in the plant Rab-D2 and Rab-F2 subclasses. RAB-E1(d)[NI] inhibited the transport of a secreted green fluorescent protein marker, secGFP, but in contrast with dominant-inhibitory RAB-D2 or RAB-F2 mutants, it did not affect the transport of Golgi or vacuolar markers. Quantitative imaging revealed that RAB-E1(d)[NI] caused less intracellular secGFP accumulation than RAB-D2(a)[NI], a dominant-inhibitory mutant of a member of the Arabidopsis Rab-D2 subclass. Furthermore, whereas RAB-D2(a)[NI] caused secGFP to accumulate exclusively in the endoplasmic reticulum, RAB-E1(d)[NI] caused secGFP to accumulate additionally in the Golgi apparatus and a prevacuolar compartment that could be labeled by FM4-64 and yellow fluorescent protein (YFP)-tagged Arabidopsis RAB-F2(b). Using the vacuolar protease inhibitor E64-d, it was shown that some secGFP was transported to the vacuole in control cells and in the presence of RAB-E1(d)[NI]. Consistent with the hypothesis that secGFP carries a weak vacuolar-sorting determinant, it was shown that a secreted form of DsRed reaches the apoplast without appearing in the prevacuolar compartment. When fused to RAB-E1(d), YFP was targeted specifically to the Golgi via a saturable nucleotide- and prenylation-dependent mechanism but was never observed on the prevacuolar compartment. We propose that RAB-E1(d)[NI] inhibits the secretory pathway at or after the Golgi, causing an accumulation of secGFP in the upstream compartments and an increase in the quantity of secGFP that enters the vacuolar pathway.

Original publication

DOI

10.1105/tpc.105.031112

Type

Journal article

Journal

Plant Cell

Publication Date

07/2005

Volume

17

Pages

2020 - 2036

Keywords

Bacterial Proteins, Cell Compartmentation, Cell Membrane, Golgi Apparatus, Green Fluorescent Proteins, Intracellular Membranes, Luminescent Proteins, Mutation, Plant Epidermis, Plant Leaves, Plant Proteins, Protein Transport, Recombinant Fusion Proteins, Signal Transduction, Tobacco, Vacuoles, rab GTP-Binding Proteins