Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We describe pOp/LhGR, a dexamethasone-inducible derivative of the pOp/LhG4 transcription activation system, and its use in tobacco to regulate expression of uidA (encoding beta-glucuronidase; GUS) and the cytokinin-biosnythetic gene ipt. The pOp/LhGR system exhibited stringent regulation and strong induced phenotypes in soil and tissue culture. In conjunction with an improved target promoter, pOp6, that carries six copies of an optimized lac operator sequence the pOp6/LhGR system directed induced GUS activities that exceeded those obtained with pOp/LhG4 or the CaMV 35S promoter but without increased uninduced activity. A single dose of dexamethasone was sufficient to direct cytotoxic levels of ipt expression in soil-grown plants although uninduced plants grew normally throughout a complete life cycle. In vitro, induced transcripts were detectable within an hour of dexamethasone application and 1 nM dexamethasone was sufficient for half maximal induction of GUS activity. Various methods of dexamethasone application were successfully applied under tissue culture and greenhouse conditions. We observed no inhibitory effects of dexamethasone or LhGR on plant development even with the highest concentrations of inducer, although tobacco seedlings were adversely affected by ethanol used as a solvent for dexamethasone stock solutions. The pOp/LhGR system provides a highly sensitive, efficient, and tightly regulated chemically inducible transgene expression system for tobacco plants.

Original publication




Journal article


Plant J

Publication Date





919 - 935


Dexamethasone, Gene Expression Regulation, Plant, Genes, Plant, Genes, Reporter, Genetic Techniques, Genetic Vectors, Glucocorticoids, Lac Operon, Phenotype, Plants, Genetically Modified, Promoter Regions, Genetic, Recombinant Fusion Proteins, Seedlings, Time Factors, Tobacco, Transcription Factors