Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We describe the use of a secreted form of Aequoria victoria green fluorescent protein (secGFP) in a non-invasive live cell assay of membrane traffic in Arabidopsis thaliana. We show that in comparison to GFP-HDEL, which accumulates in the endoplasmic reticulum (ER), secGFP generates a weak fluorescence signal when transported to the apoplast. The fluorescence of secGFP in the apoplast can be increased by growth of seedlings on culture medium buffered at pH 8.1, suggesting that apoplastic pH is responsible, at least in part, for the low fluorescence intensity of seedlings expressing secGFP. Inhibition of secGFP transport between the ER and plasma membrane (PM), either by Brefeldin A (BFA) treatment or by genetic intervention results in increased intracellular secGFP accumulation accompanied by an increase in the secGFP fluorescence intensity. secGFP thus provides a valuable tool for forward and reverse genetic analysis of membrane traffic and endomembrane organisation in Arabidopsis. Using this assay for quantitative sublethal perturbation of secGFP transport, we identify a role for root hair defective 3 (RHD3) in transport of secreted and Golgi markers between the ER and the Golgi apparatus.


Journal article


Plant J

Publication Date





398 - 414


Arabidopsis, Arabidopsis Proteins, Brefeldin A, Cytochalasin B, Endoplasmic Reticulum, GTP-Binding Proteins, Golgi Apparatus, Green Fluorescent Proteins, Hydrogen-Ion Concentration, Hydrolysis, Luminescent Proteins, Plants, Genetically Modified, Protein Transport