Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In coelacanths and cartilaginous fish, an additional ParaHox gene exists-Pdx2-that dates back to the genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations, revealing that five gene losses occurred soon after vertebrate genome duplication. Comparison of intergenic sequences reveals that some Pdx1 regulatory regions associated with development of pancreatic islets are older than tetrapods, that Pdx1 and Pdx2 share few if any conserved non-coding elements, and that there is very high sequence conservation between coelacanth species.

Original publication

DOI

10.1002/jez.b.22513

Type

Journal article

Journal

J Exp Zool B Mol Dev Evol

Publication Date

09/2014

Volume

322

Pages

352 - 358

Keywords

Animals, Base Sequence, Conserved Sequence, Evolution, Molecular, Fishes, Gene Duplication, Genes, Homeobox, Genome, Molecular Sequence Data, Phylogeny, Sequence Analysis, DNA, Species Specificity