Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our ability to hold information in mind is strictly limited. We sought to understand the relationship between oscillatory brain activity and the allocation of resources within visual short-term memory (VSTM). Participants attempted to remember target arrows embedded among distracters and used a continuous method of responding to report their memory for a cued target item. Trial-to-trial variability in the absolute circular accuracy with which participants could report the target was predicted by event-related alpha synchronization during initial processing of the memoranda and by alpha desynchronization during the retrieval of those items from VSTM. Using a model-based approach, we were also able to explore further which parameters of VSTM-guided behavior were most influenced by alpha band changes. Alpha synchronization during item processing enhanced the precision with which an item could be retained without affecting the likelihood of an item being represented per se (as indexed by the guessing rate). Importantly, our data outline a neural mechanism that mirrors the precision with which items are retained; the greater the alpha power enhancement during encoding, the greater the precision with which that item can be retained.

Original publication




Journal article


J Neurophysiol

Publication Date





2939 - 2945


EEG, VSTM, working memory, Adult, Alpha Rhythm, Female, Humans, Male, Memory, Short-Term, Visual Perception