Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HFCs (heterozygosity-fitness correlations) measure the direct relationship between an individual's genetic diversity and fitness. The effects of parental heterozygosity and the environment on HFCs are currently under-researched. We investigated these in a high-density U.K. population of European badgers (Meles meles), using a multimodel capture-mark-recapture framework and 35 microsatellite loci. We detected interannual variation in first-year, but not adult, survival probability. Adult females had higher annual survival probabilities than adult males. Cubs with more heterozygous fathers had higher first-year survival, but only in wetter summers; there was no relationship with individual or maternal heterozygosity. Moist soil conditions enhance badger food supply (earthworms), improving survival. In dryer years, higher indiscriminate mortality rates appear to mask differential heterozygosity-related survival effects. This paternal interaction was significant in the most supported model; however, the model-averaged estimate had a relative importance of 0.50 and overlapped zero slightly. First-year survival probabilities were not correlated with the inbreeding coefficient (f); however, small sample sizes limited the power to detect inbreeding depression. Correlations between individual heterozygosity and inbreeding were weak, in line with published meta-analyses showing that HFCs tend to be weak. We found support for general rather than local heterozygosity effects on first-year survival probability, and g2 indicated that our markers had power to detect inbreeding. We emphasize the importance of assessing how environmental stressors can influence the magnitude and direction of HFCs and of considering how parental genetic diversity can affect fitness-related traits, which could play an important role in the evolution of mate choice.

Original publication

DOI

10.1002/ece3.1112

Type

Journal article

Journal

Ecol Evol

Publication Date

06/2014

Volume

4

Pages

2594 - 2609

Keywords

Capture–mark–recapture survival analysis, European badger, Meles meles, heterozygosity–fitness correlations, inbreeding depression, paternal effects