Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Taxanes, including docetaxel (DOCE), are severely neurotoxic, causing disabling peripheral neuropathy. Co-treatment with neuroprotective agents has been proposed to prevent or reverse this. Besides its hemopoietic effects, erythropoietin (EPO) has neuroprotective and neurotrophic properties and when administered systemically it has a wide range of neuroprotective action in animal models of nervous system damage, including cisplatin-induced peripheral neurotoxicity. The present study investigated the effects of EPO on chemotherapy-induced peripheral neurotoxicity (CINP) by DOCE in vivo and whether it interfered with tumor growth or antitumor activity. Female Fischer rats bearing 13762 mammary carcinoma were randomly divided into four groups: untreated, treated with EPO, DOCE, or DOCE + EPO. DOCE was given once a week (5 mg/kg, i.v.) and EPO three times a week (50 microg/kg i.p.), for 4 weeks. Three other groups of rats without tumors were left untreated or given DOCE or DOCE + EPO. The rats were observed for 4 weeks after treatment. CINP and neuroprotection were evaluated by measuring nociception, electrophysiological, and biochemical parameters. EPO protected against CINP, and tumor growth in EPO-treated rats was the same as in controls. EPO significantly improved the thermal threshold, tail nerve conduction velocity, and intra-epidermal nerve fiber density. These benefits lasted through the follow-up period and EPO speeded-up spontaneous recovery after treatment withdrawal. EPO did not impair DOCE antitumor activity. Since CINP induced by DOCE reproduces the clinical utility of taxane in humans, the findings reported might provide a basis for investigating EPO as a neuroprotective agent in patients receiving therapy with DOCE.

Original publication




Journal article


Neurotox Res

Publication Date





151 - 160


Adenocarcinoma, Animals, Antineoplastic Agents, Drug Interactions, Erythropoietin, Female, Humans, Neuroprotective Agents, Peripheral Nervous System Diseases, Rats, Rats, Inbred F344, Taxoids, Xenograft Model Antitumor Assays