Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Genetic correlations between plant resistances to multiple natural enemies are important because they have the potential to determine the mode of selection that natural enemies impose on a host plant, the structure of herbivore and pathogen communities, and the success of plant breeding for resistance to multiple diseases and pests. We conducted a meta-analysis of 29 published studies of 16 different plant species reporting a total of 467 genetic correlations between resistances to multiple herbivores or pathogens. In general, genetic associations between resistances to multiple natural enemies tended to be positive regardless of the breeding design, type of attacker, and type of host plant. Positive genetic correlations between resistances were stronger when both attackers were pathogens or generalist herbivores and when resistance to different enemies was tested independently, suggesting that generalists may be affected by the same plant resistance traits and that interactions among natural enemies are common. Although the mean associations between resistances were positive, indicating the prevalence of diffuse selection and generalized defenses against multiple enemies, the large variation in both the strength and the direction of the associations suggests a continuum between pairwise and diffuse selection.

Original publication

DOI

10.1086/505766

Type

Journal article

Journal

Am Nat

Publication Date

07/2006

Volume

168

Pages

E15 - E37

Keywords

Animals, Breeding, Feeding Behavior, Food Chain, Plant Physiological Phenomena, Plants