Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Leaves, the plant's major photosynthetic organs, form through the activity of groups of pluripotent cells, termed shoot apical meristems (SAMs), located at the growing tips of plants. Leaves develop with a dorso-ventral asymmetry, with the adaxial surface adjacent to the meristem and the abaxial surface developing at a distance from it. Molecular genetic studies have shown that the correct specification of adaxial/abaxial polarity requires communication between the incipient leaf and the meristem, and that the juxtaposition of adaxial/abaxial fates is necessary for lamina outgrowth (Waites and Hudson 1995; McConnell et al. 2001). Over the last few years, a number of factors that control cell fate specification in the apex have been identified. This review will focus on recent advances on distinct but overlapping aspects of leaf development, namely, the transition from meristem to leaf fate and the specification of abaxial/adaxial polarity and its possible role in leaf growth.

Original publication

DOI

10.1007/s00425-005-1549-x

Type

Journal article

Journal

Planta

Publication Date

08/2005

Volume

221

Pages

752 - 756

Keywords

Gene Expression Regulation, Developmental, Gene Expression Regulation, Plant, Models, Biological, Plant Leaves