Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transcranial magnetic stimulation (TMS) is emerging as a promising tool to non-invasively assess specific cortical circuits in neurological diseases. A number of studies have reported the abnormalities in TMS assays of cortical function in dementias. A PubMed-based literature review on TMS studies targeting primary and secondary dementia has been conducted using the key words "transcranial magnetic stimulation" or "motor cortex excitability" and "dementia" or "cognitive impairment" or "memory impairment" or "memory decline". Cortical excitability is increased in Alzheimer's disease (AD) and in vascular dementia (VaD), generally reduced in secondary dementias. Short-latency afferent inhibition (SAI), a measure of central cholinergic circuitry, is normal in VaD and in frontotemporal dementia (FTD), but suppressed in AD. In mild cognitive impairment, abnormal SAI may predict the progression to AD. No change in cortical excitability has been observed in FTD, in Parkinson's dementia and in dementia with Lewy bodies. Short-interval intracortical inhibition and controlateral silent period (cSP), two measures of gabaergic cortical inhibition, are abnormal in most dementias associated with parkinsonian symptoms. Ipsilateral silent period (iSP), which is dependent on integrity of the corpus callosum is abnormal in AD. While single TMS measure owns low specificity, a panel of measures can support the clinical diagnosis, predict progression and possibly identify earlier the "brain at risk". In dementias, TMS can be also exploited to select and evaluate the responders to specific drugs and, it might become a rehabilitative tool, in the attempt to restore impaired brain plasticity.

Original publication




Journal article


Clin Neurophysiol

Publication Date





1509 - 1532


Brain stimulation, Cognitive dysfunction, Cortical excitability, Differential diagnosis, Intracortical circuitry, Motor impairment, Neuromodulation, Acetylcholine, Alzheimer Disease, Cerebral Cortex, Cognitive Dysfunction, Dementia, Dementia, Vascular, Diagnosis, Differential, Frontotemporal Dementia, Humans, Lewy Body Disease, Multiple System Atrophy, Neuronal Plasticity, Parkinson Disease, Receptors, Neurotransmitter, Supranuclear Palsy, Progressive, Transcranial Magnetic Stimulation