Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

While it is common knowledge in natural fibre composites manufacture that plant fibre reinforcements are considerably less compactable than synthetic fibre reinforcements, the through-thickness compaction behaviour of animal-fibre silk reinforcements has not been characterised thus far. We find that not only are silk reinforcements significantly more compressible than plant fibre reinforcements, but their compactibility exceeds that of even glass fibre textiles. For instance, the fibre volume fraction (at a compaction pressure of 2.0 bar) of woven biaxial fabrics of silk, plant fibres and E-glass are 54-57%, 30-40% and 49-54%, respectively. Therefore, silks provide an opportunity to manufacture high fibre content natural fibre composites; this is a bottleneck of plant fibre textiles. Analysing the structure of silk textiles through scanning electron microscopy, we show that favourable fibre/yarn/fabric geometry, high degree of fibre alignment and dispersion, and suitable technical fibre properties enable optimal packing and arrangement of silk textiles. © 2014 Elsevier Ltd. All rights reserved.

Original publication




Journal article


Composites Part A: Applied Science and Manufacturing

Publication Date





1 - 10