Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Strong reciprocity, whereby cooperators punish non-cooperators, may help to explain the evolutionary success of cooperative behaviours. However, theory suggests that selection for strong reciprocity can depend upon tight genetic linkage between cooperation and punishment, to avoid the strategy being outcompeted by non-punishing cooperators. We tested this hypothesis using experimental populations of the bacterium Pseudomonas aeruginosa, which cooperate by producing iron-scavenging siderophores and, in this context, punish non-cooperators with toxins. Consistent with theory, we show that cooperative punishers can indeed invade cheats, but only when the traits are tightly linked. These results emphasize that punishment is only likely to be favoured when the punishment itself leads to a direct or indirect fitness benefit to the actor.

Original publication

DOI

10.1098/rsbl.2013.1069

Type

Journal article

Journal

Biol Lett

Publication Date

02/2014

Volume

10

Keywords

Pseudomonas aeruginosa, bacteriocin, siderophore, Biological Evolution, Genetic Linkage, Microbial Interactions, Pseudomonas aeruginosa, Selection, Genetic, Siderophores