Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Epigenetic modifications have been proposed to underlie age-related dysfunction and associated disorders. 5- hydroxymethylcytosine (5-hmC) is a newly described epigenetic modification. It is generated by the oxidation of 5- methylcytosine (5-mC) by the ten-eleven translocation (TET) family of enzymes. Various studies have shown that 5-hmC is present in high levels in the brain. Its lower affinity to methyl-binding proteins as compared to 5-mC suggests that it might have a different role in the regulation of gene expression, while it is also implicated in the DNA demethylation process. Interestingly, various widely used methods for DNA methylation detection fail to discriminate between 5-hmC and 5-mC, while numerous specific techniques are currently being developed. Recent studies have indicated an increase of 5-hmC with age in the mouse brain as well as an age- and gene-expression-level-related enrichment of 5-hmC in genes implicated in neurodegeneration. These findings suggest that 5-hmC may play an important role in the etiology and course of age-related neurodegenerative disorders. The present perspective summarizes the current knowledge on 5-hmC, discusses methodological challenges related to its detection, and suggests future strategies for examining the functional role of this epigenetic modification and its possible implication in aging and Alzheimer's disease.

Type

Journal article

Journal

Curr Alzheimer Res

Publication Date

06/2012

Volume

9

Pages

545 - 549

Keywords

5-Methylcytosine, Aging, Alzheimer Disease, Animals, Cytosine, DNA Methylation, Disease Models, Animal, Epigenesis, Genetic, Humans, Translocation, Genetic