Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states--NREM and REM sleep, which occur, in rodents, on a time scale of ~5-10 minutes. Neither the mechanisms underlying the time constants of these two processes--the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.

Original publication

DOI

10.1371/journal.pone.0050677

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

Animals, Behavior, Animal, Brain, Circadian Rhythm, Homeostasis, Male, Mice, Mice, Inbred C57BL, Physical Conditioning, Animal, Sleep, Time Factors, Wakefulness