Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We establish intra-individual and inter-annual variability in European badger (Meles meles) autumnal nightly activity in relation to fine-scale climatic variables, using tri-axial accelerometry. This contributes further to understanding of causality in the established interaction between weather conditions and population dynamics in this species. Modelling found that measures of daylight, rain/humidity, and soil temperature were the most supported predictors of ACTIVITY, in both years studied. In 2010, the drier year, the most supported model included the SOLAR*RH interaction, RAIN, and 30cmTEMP (w = 0.557), while in 2012, a wetter year, the most supported model included the SOLAR*RH interaction, and the RAIN*10cmTEMP (w = 0.999). ACTIVITY also differed significantly between individuals. In the 2012 autumn study period, badgers with the longest per noctem activity subsequently exhibited higher Body Condition Indices (BCI) when recaptured. In contrast, under drier 2010 conditions, badgers in good BCI engaged in less per noctem activity, while badgers with poor BCI were the most active. When compared on the same calendar dates, to control for night length, duration of mean badger nightly activity was longer (9.5 hrs ±3.3 SE) in 2010 than in 2012 (8.3 hrs ±1.9 SE). In the wetter year, increasing nightly activity was associated with net-positive energetic gains (from BCI), likely due to better foraging conditions. In a drier year, with greater potential for net-negative energy returns, individual nutritional state proved crucial in modifying activity regimes; thus we emphasise how a 'one size fits all' approach should not be applied to ecological responses.

Original publication

DOI

10.1371/journal.pone.0083156

Type

Journal article

Journal

PLoS One

Publication Date

2014

Volume

9

Keywords

Animal Nutritional Physiological Phenomena, Animals, Europe, Humidity, Mustelidae, Seasons, Temperature