Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Ethanol production by maize (Zea mays L.) root tips, measured by an enzymic assay of the suspending medium, was correlated with changes in the cytoplasmic pH, determined by in-vivo 31 P nuclear magnetic resonance (NMR) spectroscopy, following the onset of anoxia. Strong evidence for the role of the cytoplasmic pH in triggering the switch to ethanol production under anoxia was obtained by: (i) varying the pH of the suspending medium between pH 4 and pH 10; and (ii) using the permeant weak base methylamine to combat the acidification of the cytoplasm induced by the anoxic conditions. Experimentally, it proved to be much easier to manipulate the cytoplasmic pH under anoxia after the pH had stabilised, rather than during the initial rapid acidification that occurred following the onset of anoxia, and in the presence of methylamine, it was possible to impose a normal aerobic cytoplasmic pH value on tissue that was metabolising anaerobically. By this means it was possible to demonstrate the reversibility of the pH effect on ethanol production under anoxia and thus to provide good evidence in support of the biochemical pH-stat model of the anoxic response. The NMR measurement of the cytoplasmic pH in the presence of methylamine was achieved by using a manganese pretreatment technique to eliminate interference between the cytoplasmic and vacuolar P i signals, and it seems likely that the experimental approach used here will have further applications in studies of the metabolic response to anoxia. © 1995 Springer-Verlag.

Original publication

DOI

10.1007/BF00202588

Type

Journal article

Journal

Planta

Publication Date

01/01/1995

Volume

195

Pages

324 - 330