Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Stomatins belong to the band-7 protein family, a diverse group of conserved eukaryotic and prokaryotic membrane proteins involved in the formation of large protein complexes as protein-lipid scaffolds. The Arabidopsis (Arabidopsis thaliana) genome contains two paralogous genes encoding stomatin-like proteins (SLPs; AtSLP1 and AtSLP2) that are phylogenetically related to human SLP2, a protein involved in mitochondrial fusion and protein complex formation in the mitochondrial inner membrane. We used reverse genetics in combination with biochemical methods to investigate the function of AtSLPs. We demonstrate that both SLPs localize to mitochondrial membranes. SLP1 migrates as a large (approximately 3 MDa) complex in blue-native gel electrophoresis. Remarkably, slp1 knockout mutants have reduced protein and activity levels of complex I and supercomplexes, indicating that SLP affects the assembly and/or stability of these complexes. These findings point to a role for SLP1 in the organization of respiratory supercomplexes in Arabidopsis.

Original publication

DOI

10.1104/pp.113.230383

Type

Journal article

Journal

Plant Physiol

Publication Date

03/2014

Volume

164

Pages

1389 - 1400

Keywords

Arabidopsis, Arabidopsis Proteins, Cell Respiration, DNA, Bacterial, Electron Transport, Inflorescence, Membrane Proteins, Mitochondria, Mitochondrial Membranes, Mitochondrial Proteins, Multiprotein Complexes, Mutagenesis, Insertional, Mutation, Protein Transport, Seedlings