Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homing pigeons (Columba livia) have been the central model of avian navigation research for many decades, but only more recently has research extended into understanding their mechanisms of orientation in the familiar area. The discovery (facilitated by GPS tracking) that pigeons gradually acquire with experience individually idiosyncratic routes home to which they remain faithful on repeated releases, even if displaced off-route, has helped uncover the fundamental role of familiar visual landmarks in the avian familiar area map. We evaluate the robustness and generality of the route-following phenomenon by examining extant studies in depth, including the single published counter-example, providing a detailed comparison of route efficiencies, flight corridor widths and fidelity. We combine this analysis with a review of inferences that can be drawn from other experimental approaches to understanding the nature of familiar area orientation in pigeons, including experiments on landmark recognition, and response to clock-shift, to build the first detailed picture of how bird orientation develops with experience of the familiar area. We articulate alternative hypotheses for how guidance might be controlled during route following, concluding that although much remains unknown, the details of route following strongly support a pilotage interpretation. Predictable patterns of efficiency increase, but limited to the local route, typical corridor widths of 100-200 m, high-fidelity pinch-points on route, attraction to landscape edges, and a robustness to clock-shift procedures, all demonstrate that birds can associatively acquire a map of their familiar area guided (at least partially) by direct visual control from memorised local landscape features.

Original publication

DOI

10.1242/jeb.092908

Type

Journal article

Journal

J Exp Biol

Publication Date

15/01/2014

Volume

217

Pages

169 - 179

Keywords

Columba livia, Learning, Memory, Navigation, Route following, Vision, Animals, Columbidae, Cues, Homing Behavior, Memory, Orientation