Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although the sensitivity of the plasma membrane H+-ATPase to vanadate is well known, the metabolic response of plant cells to vanadate is less well characterised in vivo and its use as an inhibitor in whole plant experiments has had mixed success. Experiments with maize (Zea mays, L.) roots and with purified plasma membrane fractions from the same tissues showed that exposure to vanadate caused: (i) a reduction in the capacity for phosphate uptake; (ii) a reduction in the extractable ATPase activity from the tissue; and (iii) a significant increase in the ATP level. The measurements on the extractable ATPase activity and the ATP level showed that the effect of vanadate developed slowly, apparently reflecting the slow accumulation of intracellular vanadate. The marked effect of vanadate on the ATP level-exposure to 500 μM vanadate for 5 h doubled the ATP content of the roots tips-indicates that there is no stringent control over the ATP level in the roots and that the plasma membrane H+-ATPase activity is likely to have a significant role in determining the ATP level under normal conditions. © 1994 Kluwer Academic Publishers.

Original publication




Conference paper

Publication Date





57 - 62