Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Maternal undernutrition can result in significant alterations to the post-natal offspring phenotype, including body size and behaviour. For example, maternal food restriction has been implicated in offspring hyperphagia, potentially causing increased weight gain and fat accumulation. This could result in obesity and other adverse long-term health effects in offspring. We investigated the link between maternal caloric restriction during gestation and offspring appetite by conducting the first meta-analysis on this topic using experimental data from mammalian laboratory models (i.e. rats and mice). We collected 89 effect sizes from 35 studies, together with relevant moderators. Our analysis revealed weak and statistically non-significant overall effect on offspring's appetite. However, we found that lower protein content of restricted diets is associated with higher food intake in female offspring. Importantly, we show that a main source of variation among studies arises from whether, and how, food intake was adjusted for body mass. This probably explains many of the contradictory results in the field. Based on our results, we recommend using allometric scaling of food intake to body mass in future studies.

Original publication




Journal article


Obes Rev

Publication Date





294 - 309


Body mass, food intake, maternal diet, systematic review, Animals, Appetite, Caloric Restriction, Dietary Fats, Eating, Female, Lactation, Maternal Nutritional Physiological Phenomena, Pregnancy, Prenatal Exposure Delayed Effects, Rats, Rats, Sprague-Dawley, Rats, Wistar