Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Image-guided interventions often rely on deformable multi-modal registration to align pre-treatment and intra-operative scans. There are a number of requirements for automated image registration for this task, such as a robust similarity metric for scans of different modalities with different noise distributions and contrast, an efficient optimisation of the cost function to enable fast registration for this time-sensitive application, and an insensitive choice of registration parameters to avoid delays in practical clinical use. In this work, we build upon the concept of structural image representation for multi-modal similarity. Discriminative descriptors are densely extracted for the multi-modal scans based on the "self-similarity context". An efficient quantised representation is derived that enables very fast computation of point-wise distances between descriptors. A symmetric multi-scale discrete optimisation with diffusion regularisation is used to find smooth transformations. The method is evaluated for the registration of 3D ultrasound and MRI brain scans for neurosurgery and demonstrates a significantly reduced registration error (on average 2.1 mm) compared to commonly used similarity metrics and computation times of less than 30 seconds per 3D registration. © 2013 Springer-Verlag.

Original publication

DOI

10.1007/978-3-642-40811-3_24

Type

Journal article

Journal

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Publication Date

23/10/2013

Volume

8149 LNCS

Pages

187 - 194