Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The electron paramagnetic resonance technique of double electron-electron resonance (DEER) was used to measure nanometre-scale distances between nitroxide spin labels attached to the complement regulatory protein CD55 (also known as decay accelerating factor) and the von Willebrand factor A (vWF-A) domain of factor B. Following a thorough assessment of the quality of the data, distances obtained from good-quality measurements are compared to predicted distances from a previously hypothesised model for the complex and are found to be incompatible. The success of using these distances as restraints in multi-body docking routines is presented critically.

Original publication

DOI

10.1080/00268976.2013.827754

Type

Journal article

Journal

Mol Phys

Publication Date

10/2013

Volume

111

Pages

2865 - 2872

Keywords

CD55, DEER, decay acceleration, distance restraints, vWF-A