Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SUMMARY: Homing endonuclease genes (HEGs) exist naturally in many single-celled organisms and can show extremely strong genetic drive allowing them to spread through populations into which they are introduced. They are being investigated as tools to manipulate the populations of important vectors of human disease, in particular the mosquitoes that transmit malaria. Before HEGs can be deployed, it is important to study their spatial spread in order to design efficient release strategies.A spatially explicit model is developed to study the spread of a HEG through a landscape whose structure is defined by the distribution of mosquito breeding and feeding sites. The model is motivated by the biology of the major vectors of malaria in Africa. The conditions for spread, fixation and loss of two major types of HEG are explored in different landscapes.In landscapes where mosquito resources are abundant, the conditions for spread are well approximated by a mean-field model. Where a HEG imposes a genetic load, it can cause population extinction, though spatial models more often predict population suppression.In certain types of landscapes where mosquito resources are rare, an introduced HEG may be prevented from moving between local mosquito populations and so a simple release strategy is unlikely to be effective, yet if the HEG succeeds in spreading population extinction is a feasible outcome. Increasing the number of release sites at the expense of releasing fewer mosquitoes per site reduces the probability that a HEG will fail.Synthesis and applications. The model presented asks for the first time how the spatial structure of mosquito populations will influence the effectiveness of a technology that is being rapidly developed for vector control. If homing endonuclease genes (HEGs) are to be used in this way, we have qualified the importance of accounting for landscape characteristics in both the execution and the expectation of their application. The next stage is to use the model to study the spread of HEGs through real landscapes where releases may take place, something that will be facilitated by the results of the present study.

Original publication

DOI

10.1111/1365-2664.12133

Type

Journal article

Journal

J Appl Ecol

Publication Date

10/2013

Volume

50

Pages

1216 - 1225

Keywords

Anopheles, epidemiology, malaria, spatial modelling, spatial spread, vector-borne disease