Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Poly(ADP-ribose) (PAR) is a post-translational modification of proteins and is synthesised by PAR polymerases (PARPs), which have long been associated with the coordination of the cellular response to DNA damage, amongst other processes. Binding of some PARPs such as PARP1 to broken DNA induces a substantial wave of PARylation, which results in significant re-structuring of the chromatin microenvironment through modification of chromatin-associated proteins and recruitment of chromatin-modifying proteins. Similarly, other DNA damage response proteins are recruited to the damaged sites via PAR-specific binding modules, and in this way, PAR mediates not only local chromatin architecture but also DNA repair. Here, we discuss the expanding role of PAR in the DNA damage response, with particular focus on chromatin regulation.

Original publication

DOI

10.1007/s00412-013-0442-9

Type

Journal article

Journal

Chromosoma

Publication Date

03/2014

Volume

123

Pages

79 - 90

Keywords

Animals, Apoptosis, Chromatin, DNA Damage, DNA Repair, Humans, Poly Adenosine Diphosphate Ribose, Poly(ADP-ribose) Polymerases