Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Correlation and partial correlation are often used to provide a characterisation of the network properties of the human brain, based on functional brain imaging data. However, for partial correlation, the choice of network nodes (brain regions) and regularisation parameters is crucial and not yet well explored. Here we assess a number of approaches by calculating how each approach performs when used to discriminate different ongoing states of brain activity. We find evidence that partial correlation matrices, when estimated with appropriate regularisation, can provide a useful characterisation of brain functional connectivity. © 2013 IEEE.

Original publication

DOI

10.1109/PRNI.2013.24

Type

Journal article

Journal

Proceedings - 2013 3rd International Workshop on Pattern Recognition in Neuroimaging, PRNI 2013

Publication Date

15/10/2013

Pages

58 - 61