Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In principle, parental relatedness, parental age, and the age of parental gametes can all influence offspring fitness through inbreeding depression and the parental effects of organismal and postmeiotic gametic senescence. However, little is known about the extent to which these factors interact and contribute to fitness variation. Here, we show that, in Drosophila melanogaster, offspring viability is strongly affected by a three-way interaction between parental relatedness, parental age, and gametic age at successive developmental stages. Overall egg-to-adult viability was lowest for offspring produced with old gametes of related, young parents. This overall effect was largely determined at the pupa-adult stage, although three-way interactions between parental relatedness, parental age and gametic age also explained variation in egg hatchability and larva-pupa survival. Controlling for the influence of parental and gametic age, we show that inbreeding depression is negligible for egg hatchability but significant at the larva-pupa and pupa-adult stages. At the pupa-adult stage, where offspring could be sexed, parental relatedness, parental age, and gametic age interacted differently in male and female offspring, with daughters suffering higher inbreeding depression than sons. Collectively, our results demonstrate that the architecture of offspring fitness is strongly influenced by a complex interaction between parental effects, inbreeding depression and offspring sex. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

Original publication

DOI

10.1111/evo.12131

Type

Journal article

Journal

Evolution

Publication Date

01/10/2013

Volume

67

Pages

3043 - 3051