Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple lines of evidence support the notion that much if not most chronic pain is dependent on on-going peripheral activity in nociceptors. This is not to say that central changes are unimportant, only that much of the central change is supported by a peripheral drive. This begs the question of what causes this peripheral drive. In some instances, particularly in association with peripheral nerve injury, nociceptors may become spontaneously active because of alterations in ion channel function or expression. But in most cases nociceptor activity arises because of the actions of peripheral mediators released by injured or damaged tissue. Some of these mediators are well known, such as the prostanoids. Others have more recently been identified, such as nerve growth factor (NGF). However, the limited efficacy of existing analgesic therapies strongly suggests that other important pain mediators exist. Here we discuss the evidence that a family of secreted proteins, the chemokines - well known for their actions in regulating immune cell migration - also play an important role in sustaining abnormal nociceptor activity in persistent pain states.

Original publication




Journal article


Neurosci Lett

Publication Date



557 Pt A


1 - 8


Chemokines, Hyperalgesia, Immune cells, Immune system, Inflammation, Peripheral pain mediators, Animals, Chemokines, Humans, Inflammation, Mice, Nociceptors, Pain, Peripheral Nerve Injuries, Rats