Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.

Original publication




Journal article


Plant Cell

Publication Date





3535 - 3552


Alleles, Arabidopsis, Arabidopsis Proteins, Ethylenes, Gene Expression Regulation, Plant, Homeostasis, Mutation, NADPH Oxidases, Plant Growth Regulators, Plant Roots, Plant Shoots, Plants, Genetically Modified, Potassium, Potassium-Hydrogen Antiporters, Reactive Oxygen Species, Salinity, Salt-Tolerance, Signal Transduction, Sodium, Xylem