Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

What drives evolution? This was one of the main questions raised at the final ZOONET meeting in Budapest, Hungary, in November 2008. The meeting marked the conclusion of ZOONET, an EU-funded Marie-Curie Research Training Network comprising nine research groups from all over Europe (Max Telford, University College London; Michael Akam, University of Cambridge; Detlev Arendt, EMBL Heidelberg; Maria Ina Arnone, Stazione Zoologica Anton Dohrn Napoli; Michalis Averof, IMBB Heraklion; Graham Budd, Uppsala University; Richard Copley, University of Oxford; Wim Damen, University of Cologne; Ernst Wimmer, University of Göttingen). ZOONET meetings and practical courses held during the past four years provided researchers from diverse backgrounds--bioinformatics, phylogenetics, embryology, palaeontology, and developmental and molecular biology--the opportunity to discuss their work under a common umbrella of evolutionary developmental biology (Evo Devo). The Budapest meeting emphasized in-depth discussions of the key concepts defining Evo Devo, and bringing together ZOONET researchers with external speakers who were invited to present their views on the evolution of animal form. The discussion sessions addressed four main topics: the driving forces of evolution, segmentation, fossils and phylogeny, and the future of Evo Devo.

Original publication

DOI

10.1002/jez.b.21294

Type

Journal article

Journal

J Exp Zool B Mol Dev Evol

Publication Date

15/11/2009

Volume

312

Pages

679 - 685

Keywords

Animals, Biodiversity, Body Patterning, Developmental Biology, Evolution, Molecular, Fossils, Genetics, Population, Hungary, Morphogenesis, Phylogeny