Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The influence of cytochrome c binding to cardiolipin bilayers on the motional characteristics of each component has been analyzed by magic-angle spinning (MAS) NMR. Observations were made by NMR of natural abundance 31P, 13C, and 1H nuclei in the lipid as well as sites enriched with 13C in the protein. Analysis of methyl carbons enriched in ([epsilon-13CH3]methionine)cytochrome c at residues 65 and 80 reveal quite different behavior for these sites when the protein was bound at a 1:15 molar ratio with hydrated cardiolipin. Cross-polarization (CP) shows a single broad resonance downfield in the methyl region which corresponds to the spectral characteristics of methionine 65 in the solution protein when subjected to moderate thermal perturbations. These observations suggest that although methionine 65 remains motionally restricted when the protein binds to the lipid bilayers, this residue becomes less shielded and exposed to more chemically distinct environments than in the native state of the protein. In contrast to its behavior in native oxidized protein, the methionine 80 methyl could be detected following direct pi/2 pulse excitation, and this residue is assumed to be released from the axial ligand site on the heme iron to become more exposed and highly mobile in the protein-lipid complex. An analysis of the CP response for natural abundance 13C nuclei in the lipid reveals a general increase in motions with slower rates (tens of kilohertz) on binding with cytochrome c, except for sites within the region of fatty acyl chain unsaturation which appear to be selectively mobilized in the complex with protein. It is concluded that, aside from effects on the unsaturated segments, the bound protein induces new modes of slow motions in the lipid assemblies rather than restricting the overall reorientation freedom of the lipid. The strong paramagnetic effects observed previously on the relaxation of phosphorus in protein-bound lipid [Spooner, P.J.R., & Watts, A. (1991) Biochemistry 30, 3880-3885] were not extended to any carbon and proton sites observable by MAS NMR in the lipid, and this infers a specific interaction of lipid phosphate groups with the heme. However, when protein was bound to cardiolipin mixed at a 1:4 mole ratio with dioleoylphosphatidylcholine in bilayers, no direct interaction with the heme was apparent from the phosphorus NMR relaxation behavior in this component, resolved by MAS. Instead, the spectral anisotropy of cardiolipin phosphorus was determined to be reduced, indicating that, on binding with cytochrome c, the headgroup organization was perturbed in this component.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal article



Publication Date





10129 - 10138


Carbon Isotopes, Cardiolipins, Cytochrome c Group, Lipid Bilayers, Magnetic Resonance Spectroscopy