Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.

Type

Journal article

Journal

Biochemistry

Publication Date

27/10/1992

Volume

31

Pages

10390 - 10399

Keywords

Bacteriorhodopsins, Deuterium, Halobacterium salinarum, Macromolecular Substances, Magnetic Resonance Spectroscopy, Mathematics, Molecular Conformation, Molecular Structure, Protein Conformation, Retinaldehyde