Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Band 3, isolated from human erythrocytes, has been reconstituted into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) deuterated in the terminal methyl groups of the choline head group. By use of Triton X-100 for selective extraction and purification of band 3 and then cholate for subsequent solubilization with the lipid, a number of reconstituted complexes were produced by exhaustive detergent dialysis with protein:lipid weight ratios of between 0.32:1 and 1.25:1. Electron micrographs of negatively stained complexes showed that this method produced large vesicles of greater than 300-nm diameter. Deuterium nuclear magnetic resonance (NMR) spectra from the choline methyl deuterons in bilayer lipid above the liquid-crystal-gel phase transition temperature were shown to change systematically with increasing concentrations of band 3 in the bilayers. The measured quadrupole splittings, taken as the separation of the turning points in the recorded spectra, decreased from a value of 1.28 kHz for pure lipid to 0.98 kHz for bilayers with a protein:lipid ratio of 1.25:1 at 26 degrees C. At 35 degrees C, a more pronounced decrease in the quadrupole splittings was measured. The data from the complexes with protein:lipid ratios up to 0.7:1 (w/w) obey the mathematical treatment for a rapid two-site exchange between lipids at the protein-lipid interface and the bulk lipid phase. The temperature dependence of the measured quadrupole splitting with respect to the protein:lipid ratio indicates that the amount of lipid at the protein-lipid interface increases with increasing temperature.(ABSTRACT TRUNCATED AT 250 WORDS)

Type

Journal article

Journal

Biochemistry

Publication Date

22/04/1986

Volume

25

Pages

2180 - 2187

Keywords

Anion Exchange Protein 1, Erythrocyte, Deuterium, Dimyristoylphosphatidylcholine, Humans, Kinetics, Lipid Bilayers, Macromolecular Substances, Magnetic Resonance Spectroscopy, Microscopy, Electron, Thermodynamics