Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

People make faster familiarity decisions for their own face compared with a familiar other. Lesion studies diverge on whether this self-face prioritization (SFP) effect is associated with functional processes isolated in the left or right hemispheres. To assess both decreases (hypo-) and increases (hyper-) in SFP after brain lesion, we asked patients with chronic deficits to perform familiarity judgments to images of their own face, a familiar other, or unfamiliar faces. Of 30 patients, 7 showed hypo- and 6 showed hyper-self-bias effects, comparing responses with their own faces versus responses with a familiar other. Hyper-self-bias correlated with reduced executive control function and, at a neural level, this was associated with lesions to the left prefrontal and superior temporal cortices. In contrast, reduced self-prioritization was associated with damage to the right inferior temporal structures including the hippocampus and extending to the fusiform gyrus. In addition, lesions affecting fibers crossing the right temporal cortex, potentially disconnecting occipital-temporal from frontal regions, diminished the self-bias effect. The data highlight that self-prioritized face processing is linked to regions in the right hemisphere associated with face recognition memory and it also calls on executive processes in the left hemisphere that normally modulate self-prioritized attention.

Original publication




Journal article


Cereb Cortex

Publication Date





374 - 383


facial self-awareness, hyper-self, hypo-self, neuropsychology, self-face prioritization, voxel-based morphometry, Adult, Aged, Aged, 80 and over, Brain, Brain Diseases, Brain Mapping, Face, Female, Humans, Male, Middle Aged, Neuropsychological Tests, Pattern Recognition, Visual, Photic Stimulation, Recognition, Psychology, Self Concept, Young Adult