Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is increasing evidence from in vivo recordings in monkeys trained to respond to stimuli by making left- or rightward eye movements, that firing rates in certain groups of neurons in oculo-motor areas mimic drift-diffusion processes, rising to a (fixed) threshold prior to movement initiation. This supplements earlier observations of psychologists, that human reaction-time and error-rate data can be fitted by random walk and diffusion models, and has renewed interest in optimal decision-making ideas from information theory and statistical decision theory as a clue to neural mechanisms. We review results from decision theory and stochastic ordinary differential equations, and show how they may be extended and applied to derive explicit parameter dependencies in optimal performance that may be tested on human and animal subjects. We then briefly describe a biophysically-based model of a pool of neurons in locus coeruleus, a brainstem nucleus implicated in widespread norepinephrine release. This neurotransmitter can effect transient gain changes in cortical circuits of the type that the abstract drift-diffusion analysis requires. We also describe how optimal gain schedules can be computed in the presence of time-varying noisy signals. We argue that a rational account of how neural spikes give rise to simple behaviors is beginning to emerge. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.

Original publication




Conference paper

Publication Date





2496 - 2502