Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The alphaproteobacterium Magnetospirillum gryphiswaldense synthesizes magnetosomes, which are membrane-enveloped crystals of magnetite. Here we show that nitrite reduction is involved in redox control during anaerobic biomineralization of the mixed-valence iron oxide magnetite. The cytochrome cd1-type nitrite reductase NirS shares conspicuous sequence similarity with NirN, which is also encoded within a larger nir cluster. Deletion of any one of these two nir genes resulted in impaired growth and smaller, fewer, and aberrantly shaped magnetite crystals during nitrate reduction. However, whereas nitrite reduction was completely abolished in the ΔnirS mutant, attenuated but significant nitrite reduction occurred in the ΔnirN mutant, indicating that only NirS is a nitrite reductase in M. gryphiswaldense. However, the ΔnirN mutant produced a different form of periplasmic d(1) heme that was not noncovalently bound to NirS, indicating that NirN is required for full reductase activity by maintaining a proper form of d1 heme for holo-cytochrome cd(1) assembly. In conclusion, we assign for the first time a physiological function to NirN and demonstrate that effective nitrite reduction is required for biomineralization of wild-type crystals, probably by contributing to oxidation of ferrous iron under oxygen-limited conditions.

Original publication

DOI

10.1128/JB.00686-13

Type

Journal article

Journal

J Bacteriol

Publication Date

09/2013

Volume

195

Pages

4297 - 4309

Keywords

Anaerobiosis, Bacterial Proteins, Cytochromes, Ferrosoferric Oxide, Heme, Iron, Magnetosomes, Magnetospirillum, Nitrite Reductases, Nitrites, Oxidation-Reduction