Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We review our recent advances in four-wave mixing spectroscopy of individual semiconductor quantum dots using heterodyne spectral interferometry, a novel implementation of transient nonlinear spectroscopy allowing the study of the transient nonlinear polarization emitted from individual electronic transitions in both amplitude and phase. We present experiments on individual excitonic transitions localized in monolayer islands of a GaAs/AlAs quantum well. The detection of amplitude and phase allows the implementation of a twodimensional femtosecond spectroscopy, in which mutual coherent coupling of single quantum dot states can be observed and quantified. By combining two-dimensional femtosecond spectroscopy with four-wave mixing mapping in the real space we found coherent coupling between spatially separated excitons by up to ~ 0.8 μm..

Original publication

DOI

10.1117/12.767661

Type

Conference paper

Publication Date

21/04/2008

Volume

6892