Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Climate change induced alterations to rainfall patterns have the potential to affect the regeneration dynamics of plant species, especially in historically everwet tropical rainforest. Differential species response to infrequent rainfall may influence seed germination and seedling establishment in turn affecting species distributions. We tested the role of watering frequency intervals (from daily to six-day watering) on the germination and the early growth of Dipterocarpaceae seedlings in Borneo. We used seeds that ranged in size from 500 to 20,000 mg in order to test the role of seed mass in mediating the effects of infrequent watering. With frequent rainfall, germination and seedling development traits bore no relationship to seed mass, but all metrics of seedling growth increased with increasing seed mass. Cumulative germination declined by 39.4% on average for all species when plants were watered at six-day intervals, and days to germination increased by 76.5% on average for all species from daily to six-day intervals. Final height and biomass declined on average in the six-day interval by 16% and 30%, respectively, but the percentage decrease in final size was greater for large-seeded species. Rooting depth per leaf area also significantly declined with seed mass indicating large-seeded species allocate relatively more biomass for leaf production. This difference in allocation provided an establishment advantage to large-seeded species when water was non-limiting but inhibited their growth under infrequent rainfall. The observed reduction in the growth of large-seeded species under infrequent rainfall would likely restrict their establishment in drier microsites associated with coarse sandy soils and ridge tops. In total, these species differences in germination and initial seedling growth indicates a possible niche axis that may help explain both current species distributions and future responses to climate change.

Original publication

DOI

10.1371/journal.pone.0070287

Type

Journal article

Journal

PLoS One

Publication Date

2013

Volume

8

Keywords

Biomass, Borneo, Dipterocarpaceae, Germination, Seedlings, Seeds