Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mutation of gltB (encoding glutamate oxoglutarate amidotransferase or GOGAT) in RU2307 increased the intracellular Gln:Glu ratio and inhibited amino acid transport via Aap and Bra. The mechanism probably involves global post-translational inhibition independent of Ntr. Transport was separately restored by increased gene expression of Aap or heterologous transporters. Likewise, second site suppressor mutations in the RNA chaperone Hfq elevated transport by Aap and Bra by increasing mRNA levels. Microarrays showed Hfq regulates 34 ABC transporter genes, including aap, bra and opp. The genes coding for integral membrane proteins and ABC subunits aapQMP braDEFGC were more strongly elevated in the hfq mutants than solute-binding proteins (aapJ braC). aapQMP and braDEFG are immediately downstream of stem-loops, indicating Hfq attenuates downstream translation and stability of mRNA, explaining differential expression of ABC genes. RU2307 nodulated peas and bacteria grew down infection threads, but bacteroid development was arrested and N(2) was not fixed. This probably results from an inability to synthesize or transport amino acids. However, GOGAT and GOGAT/AldA double mutants carrying suppressor mutations that increased amino acid uptake fixed N(2) on pea plants. Thus de novo ammonium assimilation into amino acids is unnecessary in bacteroids demonstrating sufficient amino acids are supplied by plants.

Original publication

DOI

10.1111/j.1365-2958.2011.07565.x

Type

Journal article

Journal

Mol Microbiol

Publication Date

04/2011

Volume

80

Pages

149 - 167

Keywords

Bacterial Proteins, Chromatography, Liquid, Mass Spectrometry, Mutation, Nitrogen, Nitrogen Fixation, Peas, Reverse Transcriptase Polymerase Chain Reaction, Rhizobium leguminosarum