Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human opportunistic pathogen Pseudomonas aeruginosa is the major cause of morbidity and mortality of cystic fibrosis patients and is responsible for a variety of infections in compromised hosts. Using PCR-based signature-tagged mutagenesis, we identified a P. aeruginosa STM5437 mutant with an insertion into the PA5437 gene (called pycR for putative pyruvate carboxylase regulator). PycR inactivation results in 100,000-fold attenuation of virulence in the rat lung in vivo. PycR has the signature of a transcriptional regulator with a predicted helix-turn-helix motif binding to a typical LysR DNA binding site in the PA5436 (pycA)-PA5437 (pycR) intercistronic region. Two pyruvate carboxylase subunits (pycA and pycB) are divergently transcribed upstream of pycR. Transcriptional start sites of pycR and pycA are located at -127 and -88 bp upstream of their initiation codons with Shine-Dalgarno and putative promoter sequences containing -10 and -35 sequences. The DNA binding of PycR was confirmed by DNA mobility shift assay. Genome-wide transcriptional profiling and quantitative real-time PCR (qRT-PCR) indicated that the genes differentially regulated by PycR include two pyruvate carboxylase genes and genes necessary for lipid metabolism, lipolytic activity, anaerobic respiration and biofilm formation. PycR is a regulator with pleiotropic effects on virulence factors, such as lipase and esterase expression and biofilm formation, which are important for maintenance of P. aeruginosa in chronic lung infection.

Original publication




Journal article



Publication Date





2106 - 2118


Animals, Bacterial Proteins, Base Sequence, Binding Sites, Biofilms, Electrophoretic Mobility Shift Assay, Gene Expression Regulation, Bacterial, Genes, Regulator, Genetic Complementation Test, Genome, Bacterial, Genomics, Humans, Male, Molecular Sequence Data, Mutation, Oligonucleotide Array Sequence Analysis, Operon, Promoter Regions, Genetic, Pseudomonas Infections, Pseudomonas aeruginosa, Rats, Rats, Sprague-Dawley, Transcription Factors, Virulence