Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

• The eucalyptus R2R3 transcription factor, EgMYB1 contains an active repressor motif in the regulatory domain of the predicted protein. It is preferentially expressed in differentiating xylem and is capable of repressing the transcription of two key lignin genes in vivo. • In order to investigate in planta the role of this putative transcriptional repressor of the lignin biosynthetic pathway, we overexpressed the EgMYB1 gene in Arabidopsis and poplar. • Expression of EgMYB1 produced similar phenotypes in both species, with stronger effects in transgenic Arabidopsis plants than in poplar. Vascular development was altered in overexpressors showing fewer lignified fibres (in phloem and interfascicular zones in poplar and Arabidopsis, respectively) and reduced secondary wall thickening. Klason lignin content was moderately but significantly reduced in both species. Decreased transcript accumulation was observed for genes involved in the biosynthesis of lignins, cellulose and xylan, the three main polymers of secondary cell walls. Transcriptomic profiles of transgenic poplars were reminiscent of those reported when lignin biosynthetic genes are disrupted. • Together, these results strongly suggest that EgMYB1 is a repressor of secondary wall formation and provide new opportunities to dissect the transcriptional regulation of secondary wall biosynthesis.

Original publication




Journal article


New Phytol

Publication Date





774 - 786


Arabidopsis, Cell Wall, Cellulose, Eucalyptus, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Plant, Genes, Plant, Lignin, Phenotype, Plant Proteins, Plant Vascular Bundle, Plants, Genetically Modified, Populus, Transcription Factors, Xylans