Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: An important question behind vertebrate evolution is whether the cranial placodes originated de novo, or if their precursors were present in the ancestor of chordates. In this respect, tunicates are of particular interest as they are considered the closest relatives to vertebrates. They are also the only chordate group possessing species that reproduce both sexually and asexually, allowing both types of development to be studied to address whether embryonic pathways have been co-opted during budding to build the same structures. RESULTS: We studied the expression of members of the transcriptional network associated with vertebrate placodal formation (Six, Eya, and FoxI) in the colonial tunicate Botryllus schlosseri. During both sexual and asexual development, each transcript is expressed in branchial fissures and in two discrete regions proposed to be homologues to groups of vertebrate placodes. DISCUSSION: Results reinforce the idea that placode origin predates the origin of vertebrates and that the molecular network involving these genes was co-opted in the evolution of asexual reproduction. Considering that gill slit formation in deuterostomes is based on similar expression patterns, we discuss possible alternative evolutionary scenarios depicting gene co-option as critical step in placode and pharynx evolution.

Original publication

DOI

10.1002/dvdy.23957

Type

Journal article

Journal

Dev Dyn

Publication Date

06/2013

Volume

242

Pages

752 - 766

Keywords

Animals, Biological Evolution, Brain, Chordata, DNA, Complementary, Gene Expression Profiling, Gene Expression Regulation, Developmental, Gene Regulatory Networks, In Situ Hybridization, Lymphocyte Activation, Phylogeny, Transcription, Genetic, Urochordata