Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We identified and clinically investigated two patients with primary erythromelalgia mutations (PEM), which are the first reported to map to the fourth domain of Nav1.7 (DIV). The identified mutations (A1746G and W1538R) were cloned and transfected to cell cultures followed by electrophysiological analysis in whole-cell configuration. The investigated patients presented with PEM, while age of onset was very different (3 vs. 61 years of age). Electrophysiological characterization revealed that the early onset A1746G mutation leads to a marked hyperpolarizing shift in voltage dependence of steady-state activation, larger window currents, faster activation kinetics (time-to-peak current) and recovery from steady-state inactivation compared to wild-type Nav1.7, indicating a pronounced gain-of-function. Furthermore, we found a hyperpolarizing shift in voltage dependence of slow inactivation, which is another feature commonly found in Nav1.7 mutations associated with PEM. In silico neuron simulation revealed reduced firing thresholds and increased repetitive firing, both indicating hyperexcitability. The late-onset W1538R mutation also revealed gain-of-function properties, although to a lesser extent. Our findings demonstrate that mutations encoding for DIV of Nav1.7 can not only be linked to congenital insensitivity to pain or paroxysmal extreme pain disorder but can also be causative of PEM, if voltage dependency of channel activation is affected. This supports the view that the degree of biophysical property changes caused by a mutation may have an impact on age of clinical manifestation of PEM. In summary, these findings extent the genotype-phenotype correlation profile for SCN9A and highlight a new region of Nav1.7 that is implicated in PEM.

Original publication

DOI

10.1007/s12017-012-8216-8

Type

Journal article

Journal

Neuromolecular Med

Publication Date

06/2013

Volume

15

Pages

265 - 278

Keywords

Action Potentials, Age of Onset, Amino Acid Sequence, Analgesics, Child, Preschool, Erythromelalgia, Female, HEK293 Cells, Humans, Ion Transport, Middle Aged, Molecular Sequence Data, Mutagenesis, Site-Directed, Mutation, Missense, NAV1.7 Voltage-Gated Sodium Channel, Patch-Clamp Techniques, Phenotype, Point Mutation, Protein Structure, Tertiary, Recombinant Fusion Proteins, Sensation Disorders, Sequence Alignment, Sequence Homology, Amino Acid, Sodium, Transfection