Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host's resistance. Generation of reactive oxygen species (ROS) is one of the host's initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. RESULTS: We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses - total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. CONCLUSIONS: These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success.

Original publication

DOI

10.1186/1472-6785-13-15

Type

Journal article

Journal

BMC Ecol

Publication Date

08/04/2013

Volume

13

Keywords

Animals, Animals, Wild, Ecosystem, Host-Parasite Interactions, Malaria, Avian, Oxidative Stress, Passeriformes, Plasmodium, Population Density, Species Specificity