Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: We test the hypothesis that brain networks associated with cognitive function shift away from a "small-world" organization following traumatic brain injury (TBI). METHODS: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. RESULTS: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. CONCLUSIONS: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI.

Original publication

DOI

10.1212/WNL.0b013e3182929f38

Type

Journal article

Journal

Neurology

Publication Date

14/05/2013

Volume

80

Pages

1826 - 1833

Keywords

Adolescent, Adult, Brain Injuries, Brain Mapping, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Nerve Net, Neuropsychological Tests, Young Adult