Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

By far the most studied multidrug resistance protein is P-glycoprotein. Despite recent structural data, key questions about its function remain. P-glycoprotein (P-gp) is flexible and undergoes large conformational changes as part of its function and in this respect, details not only of the export cycle, but also the recognition stage are currently lacking. Given the flexibility, molecular dynamics (MD) simulations provide an ideal tool to examine this aspect in detail. We have performed MD simulations to examine the behaviour of P-gp. In agreement with previous reports, we found that P-gp undergoes large conformational changes which tended to result in the nucleotide-binding domains coming closer together. In all simulations, the approach of the NBDs was asymmetrical in agreement with previous observations for other ABC transporter proteins. To validate the simulations, we make extensive comparison to previous cross-linking data. Our results show very good agreement with the available data. We then went on to compare the influence of inhibitor compounds bound with simulations of a substrate (daunorubicin) bound. Our results suggest that inhibitors may work by keeping the NBDs apart, thus preventing ATP-hydrolysis. On the other hand, repeat simulations of daunorubicin (substrate) in one particular binding pose suggest that the approach of the NBDs is not impaired and that the structure would be still be competent to perform ATP hydrolysis, thus providing a model for inhibition or substrate transport. Finally we compare the latter to earlier QSAR data to provide a model for the first part of substrate transport within P-gp.

Original publication

DOI

10.1002/prot.24324

Type

Journal article

Journal

Proteins

Publication Date

09/2013

Volume

81

Pages

1653 - 1668

Keywords

computational, drug, molecular dynamics, multi-drug resistance, recognition, simulation, ATP-Binding Cassette, Sub-Family B, Member 1, Amino Acid Sequence, Animals, Binding Sites, Humans, Ligands, Mice, Molecular Dynamics Simulation, Molecular Sequence Data, Sequence Alignment, Substrate Specificity