Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interactions of membrane proteins with lipid molecules are central to their stability and function. We have used multiscale molecular dynamics simulations to determine the extent to which interactions with lipids are conserved across the aquaporin (Aqp) family of membrane proteins. Simulation-based assessment of the lipid interactions made by Aqps when embedded within a simple phospholipid bilayer agrees well with the protein-lipid contacts determined by electron diffraction from 2D crystals. Extending this simulation-based analysis to all Aqps of known structure reveals a degree of conservation of such interactions across the Aqp structural proteome. Despite similarities in the binding orientations and interactions of the lipids, there do not appear to be distinct, high-specificity lipid binding sites on the surface of Aqps. Rather Aqps exhibit a more broadly conserved protein/lipid interface, suggestive of interchange between annular and bulk lipids, instead of a fixed annular "shell" of lipids.

Original publication

DOI

10.1016/j.str.2013.03.005

Type

Journal article

Journal

Structure

Publication Date

07/05/2013

Volume

21

Pages

810 - 819

Keywords

Amino Acid Sequence, Aquaporins, Binding Sites, Lipid Bilayers, Lipids, Models, Molecular, Molecular Dynamics Simulation, Molecular Sequence Data, Protein Conformation