Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Photosynthesis underpins the viability of most ecosystems, with C4 plants that exhibit 'Kranz' anatomy being the most efficient primary producers. Kranz anatomy is characterized by closely spaced veins that are encircled by two morphologically distinct photosynthetic cell types. Although Kranz anatomy evolved multiple times, the underlying genetic mechanisms remain largely elusive, with only the maize scarecrow gene so far implicated in Kranz patterning. To provide a broader insight into the regulation of Kranz differentiation, we performed a genome-wide comparative analysis of developmental trajectories in Kranz (foliar leaf blade) and non-Kranz (husk leaf sheath) leaves of the C4 plant maize. Using profile classification of gene expression in early leaf primordia, we identified cohorts of genes associated with procambium initiation and vascular patterning. In addition, we used supervised classification criteria inferred from anatomical and developmental analyses of five developmental stages to identify candidate regulators of cell-type specification. Our analysis supports the suggestion that Kranz anatomy is patterned, at least in part, by a SCARECROW/SHORTROOT regulatory network, and suggests likely components of that network. Furthermore, the data imply a role for additional pathways in the development of Kranz leaves.

Original publication




Journal article


Plant J

Publication Date





656 - 670


Zea mays, accession numbers SRS394616-SRS394626, Body Patterning, Cell Differentiation, Gene Expression Profiling, Gene Library, Genes, Plant, Genome, Plant, High-Throughput Nucleotide Sequencing, Meristem, Metabolic Networks and Pathways, Photosynthesis, Plant Leaves, RNA, Plant, Sequence Analysis, DNA, Transcriptome, Zea mays