Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The pattern of appearance of myelin-associated proteins in the visual system of the Brazilian opossum Monodelphis domestica is described. Whole mounts of optic nerve, chiasm, and optic tract were sectioned horizontally and incubated with antibodies to myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG), "Rip," and the neurite inhibitory protein (IN-1), followed by visualization with diaminobenzidine and a peroxidase-conjugated secondary antibody. PLP is first detectable 24 days after birth (P24) at the centre of the optic chiasm. MBP, MAG, Rip, and IN-1 appear first in the same area at P26. By P28 the distribution of all proteins is similar, occupying the entire chiasm, optic tracts, and prechiasmatic portion of the optic nerves. Protein expression progresses along the optic nerve to reach the lamina cribrosa by P34, coincident with the time of eye opening. A critical period in which the retinofugal pathway has a regenerative capacity has recently been observed in Monodelphis. This period ends at P12, 2 weeks before the appearance of the myelin-associated inhibitory proteins MAG and IN-1. These results therefore suggest that regeneration in the developing retinofugal projection of the opossum is restricted by an earlier non-myelin factor, which is in contrast to current literature on the spinal cord.

Original publication




Journal article


J Comp Neurol

Publication Date





27 - 36


Animals, Biological Factors, Immunohistochemistry, Myelin Proteins, Myelin Proteolipid Protein, Myelin-Associated Glycoprotein, Nerve Regeneration, Opossums, Optic Nerve, Retinal Ganglion Cells, Time Factors